Дискретная математика. 3 Лабораторные работы + контрольная работа
Контрольная работа
в среде программирования Pascal
Среда программирования: Pascal
Название работы: Дискретная математика. 3 Лабораторные работы + контрольная работа
Вид работы: Контрольная работа
Описание: Предмет: Дискретная математика
3 Лабораторные работы + контрольная работа.
Лабораторные без варианта. Вариант контрольной - 8.
Лабораторная работа №1
Бинарное отношение R на конечном множестве A: R  A2 – задано списком упорядоченных пар вида (a,b), где a,bA. Требования на множество – в нём не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию. Если введённое пользователем множество не соответствует этим требованиям, программа должна автоматически привести его к необходимому виду.
Программа должна построить матрицу бинарного отношения и определить его свойства: рефлексивность, антирефлексивность, симметричность, антисимметричность, транзитивность. Проверку свойств выполнять по матрице, сопровождая необходимыми пояснениями.
После вывода результатов необходимо предусмотреть возможность изменения заданного бинарного отношения либо выхода из программы.
Лабораторная работа №2
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве результата выводить построчно каждое из подмножеств (в виде битовой шкалы), сопровождая их порядковыми номерами. В случае большого количества результирующих строк (превышающего размер экрана) выполнять поэкранную выдачу, а также осуществлять их вывод в файл с выдачей на экран сообщения для пользователя – имя файла и его местонахождение.
Лабораторная работа №3
Граф задан его матрицей смежности. Требуется определить количество компонент связности этого графа. При этом должны быть конкретно перечислены вершины, входящие в каждую компоненту связности.
Выбор алгоритма поиска компонент связности – произвольный. Например, приветствуется использование одного из видов обхода (поиск в глубину или поиск в ширину).
Пользователю должна быть предоставлена возможность редактировать исходную матрицу, т.е. изменять исходный граф без выхода из программы. Предусмотреть также возможность изменения количества вершин.
Контрольная работа
Вариант 8
№1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) б) CD  AC  BD.
№2 Даны два конечных множества: А = {a, b, c}, B = {1, 2, 3, 4}; бинарные отношения P1  AB, P2  B2. Изобразить P1, P2 графически. Найти P = (P2◦P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,1),(b,3),(c,1),(c,4),(c,3),(c,2)}; P2 = {(1,1),(1,2),(1,4),(2,1),(2,2),(2,3),(3,3),(3,2),(3,4),(4,3),(4,4),(4,1)}.
№3 Задано бинарное отношение P; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным. P  R2, P = {(x,y) | y < x – 1}.
№4 Доказать утверждение методом математической индукции: 12 + 22 + 32 + … + n2 = n·(n+1)·(2·n+1)/6.
№5 Семеро сотрудников фирмы направляются на изучение иностранного языка, причем нужно распределить их для изучения английского, немецкого и французского языков (каждый изучает только один язык). Сколько существует различных способов такого распределения? Сколькими способами они могут устроиться заниматься в двух совершенно одинаковых комнатах библиотеки (не менее одного в комнате)?
№6 Сколько существует положительных трехзначных чисел: а) делящихся на числа 5, 18 или 21? б) делящихся ровно на одно из этих трех чисел?
№7 Найти коэффициенты при a=x2·y3·z2, b=x·y·z4, c=x4·y4 в разложении (5·x2+2·y+3·z)6.
№8 Найти последовательность {an}, удовлетворяющую рекуррентному соотношению 2·an+2 – 10·an+1 + 12·an = 0 и начальным условиям a1=3, a2=27.
№9 Орграф задан матрицей смежности. Необходимо:
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл).
№10 Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти: а) остовное дерево минимального веса;
б) кратчайшее расстояние от вершины v4 до остальных вершин графа, используя алгоритм Дейкстры.
Год: 2020
Данный заказ (контрольная работа) выполнялся нашим сайтом в 2020-м году, в рамках этого заказа была разработана программа в среде программирования Pascal. Если у Вас похожее задание на программу, которую нужно написать на Pascal, либо на другом языке программирования, пожалуйста заполните форму, приведённую ниже, после чего Ваше задание в первую очередь рассмотрит наш программист, выполнявший в 2020-м году этот заказ, если он откажется, то Ваше задание оценят другие наши программисты в течение 48-и часов, если оценка нужна срочно, просим Вас оставить пометку об этом - напишите в тексте задания фразу "СРОЧНЫЙ ЗАКАЗ".
Тел.:
+79374242235
Viber: +79374242235 Telegram: kursovikcom ВКонтакте: kursovikcom WhatsApp +79374242235 E-mail: info@kursovik.com Skype: kursovik.com |